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Abstract
From statistical distinguishability of probability distributions, one can define
distinguishability of quantum states. A corresponding measurement to perform,
optimal in a definite sense, for distinguishing between two given states ρA and
ρB , has been derived by Fuchs and Caves. We show that the Bures–Uhlmann
geodesic through the two states singles out this measurement. The geodesic
‘bounces’ at the boundary of the set of quantum states. Whenever the geodesic
hits the boundary, the state orthogonal to that boundary state is one of the basis
states for the measurement.

PACS numbers: 03.67.−a, 03.65.Wj

Encountering two quantum states, one might ask how similar they are. Clearly one can
think of ways to understand ‘similar’ that would make this question relevant in quantum
information processing. One reformulation of the question could be: How well can we
distinguish between the two states, with the aid of a measurement? Orthogonal states are
one-shot distinguishable—it is possible to measure just once to know the state. But for given
non-orthogonal states, there is no measurement that will discriminate between the states with
certainty. Then we can ask for the measurement that will be the most advantageous, in a
statistical sense, for distinguishing them. For every measurement, the two states give two
probability distributions for the outcomes. To distinguish between the states we need to
distinguish between the probability distributions.

This leads to statistical distance [1, 2] between states and, in a definite sense, a best
distinguishing measurement. Fuchs and Caves [3] have derived an expression for this distance,
and also for the operator corresponding to the optimal measurement. The distance turned out to
be the same as the geodesic distance of the Bures–Uhlmann metric [4–7] on the set of quantum
states. In this letter we first introduce these results and some facts about the Bures–Uhlmann
metric. This will lead the way to our result. We will show how the optimal measurement is
determined by the Bures–Uhlmann geodesic connecting the two quantum states: the geodesic
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‘bounces’ at the boundary of the set of quantum states, at states orthogonal to the basis states
of the measurement operator.

Every measurement that can be performed on a quantum system can be described by a
POVM—a positive operator valued measure. This is a complete set of non-negative Hermitian
operators Ei acting on an N-dimensional Hilbert space HN ; i indexes the measurement
outcomes and completeness means

∑
i Ei = 11 (the identity operator). If the POVM

elements are orthogonal one-dimensional projectors, Ei = |ei〉〈ei |, we have a von Neumann
measurement, with a corresponding observable O = ∑N

i=1 λiEi . Upon measuring, the
outcome i will occur with probability pi = Tr Eiρ, where ρ is the density operator describing
the state of the system. Thus, two states ρA and ρB will produce two probability distributions
p(A) and p(B).

Sampling from these distributions a finite number of times will give frequencies that
differ somewhat from the probabilities. From the size of the statistical fluctuations, a measure
of distinguishability between probability distributions can be found. This is the statistical
distance d(p(A), p(B)), by Bhattacharyya [1] and Wootters [2], given by

cos d(p(A), p(B)) =
∑

i

√
p

(A)
i p

(B)
i . (1)

The corresponding Riemannian metric is known as the Fisher–Rao metric.
Different POVMs give different probability distributions, and thus different statistical

distances. Take the measurement that gives the maximal statistical distance. Then, by
definition, that distance is the distance d(ρA, ρB) between quantum states:

d(ρA, ρB) ≡ max
{Ei }

arccos

(∑
i

√
Tr EiρA

√
Tr EiρB

)
. (2)

Fuchs and Caves [3] showed that the maximization yields

d(ρA, ρB) = arccos Tr
√

ρ
1/2
A ρBρ

1/2
A , (3)

where
√

ρ = ρ1/2 is the unique non-negative operator such that ρ1/2ρ1/2 = ρ. This expression
looks asymmetric, but one can show that it is not. The most separated states are orthogonal
states, which rest at the distance π/2 from each other. For pure states |ψA〉 and |ψB〉 we have
d = arccos |〈ψA|ψB〉|, the angle in Hilbert space between the two vectors.

It may be noted that the same trace expression appears in the fidelity [8]:

F(ρA, ρB) =
(

Tr
√

ρ
1/2
A ρBρ

1/2
A

)2

. (4)

It is a choice for a quantity that should measure the accuracy of transmission of a signal via a
quantum channel.

What is more of our concern here is that the distance d(ρA, ρB) (3) is the same as the
geodesic distance in the set of density operators, according to the Bures–Uhlmann metric.
Shortly we will see how this metric is constructed. But first we will take a look at the best
measurement—the measurement found to correspond to the maximal distance (3) [3]. It is a
measurement of the observable

M = ρ
−1/2
A

√
ρ

1/2
A ρBρ

1/2
A ρ

−1/2
A . (5)

This optimal measurement is unique, except for some special cases. (These are when M has
degenerate eigenvalues, or when the states are non-invertible, i.e. when they are boundary
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states.) Although we have an explicit expression for the best distinguishing measurement,
it is not easy to determine what it is for given density operators. Operator square roots are
rather unwieldy to compute. However, this operator has appeared earlier. It is a part of the
prescription for the Bures–Uhlmann geodesics. We will take advantage of this connection to
get a new description of the best measurement.

It should also be mentioned that formula (5) is an operator mean. Operator means,
fulfilling a set of reasonable criteria, can be defined for two positive operators A and B [9].
The geometric mean,

A#B = A1/2
√

A−1/2BA−1/2A1/2, (6)

is one of these. Thus, we see that the optimal observable (5) is the geometric mean of ρ−1
A and

ρB :

M = ρ−1
A #ρB. (7)

Now we will turn to the Bures–Uhlmann metric [4–7]. It is obtained from a (kind of) fibre
bundle construction in the Hilbert–Schmidt space. From this space of operators W , acting on
HN , we have the projection

W −→ ρ = WW †, (8)

to the base manifold of positive operators. (W † denotes the Hermitian conjugate of W .) The
fibres are obtained by right multiplication of the unitary group, since W and WU , for unitary
U, will be projected to the same operator. In the bundle space we define distances D(WA,WB)

by

D2(WA,WB) = Tr(WA − WB)
(
W

†
A − W

†
B

)
(9)

—a Euclidean distance. In the base manifold of positive operators, the distance between two
operators is defined as the length of the shortest path between the corresponding fibres in the
bundle space. Here we are only interested in the set of normalized density operators, which
means projections of operators W on the unit sphere, Tr WW † = 1, in the Hilbert–Schmidt
space. With this restriction, the geodesic distance we get in the set of density operators is
given by equation (3).

The physical interpretation of this construction is that of state purification. Every mixed
state ρ can be purified in a larger Hilbert space; the system is regarded as a subsystem of a
bipartite system. The Hilbert–Schmidt space plays the role of the larger state space. Every
operator W represents a pure state vector, and the reduced density operator for the subsystem
is WW †. W is said to be a purification of ρ, if ρ = WW †. Consequently, the whole fibre WU

consists of purifications of ρ. The distance between the states ρA and ρB of the subsystem
should not be larger than between any two purifications WA and WB . This is assured by finding
the shortest path between the fibres of purifications [7].

Geodesics on the unit sphere (i.e. great circles) in the Hilbert–Schmidt space can be
expressed in the following way:

W(t) = W0 cos t + Ẇ0 sin t, 0 � t < 2π, (10)

with normalization and orthogonality conditions, Tr W0W
†
0 = Tr Ẇ0Ẇ

†
0 = 1 and Tr

(
W0Ẇ

†
0 +

W
†
0Ẇ0

) = 0. For this curve to project to a geodesic in the set of density operators, it is also
required that it is everywhere perpendicular to the fibres—the ‘horizontality condition’. This
reads

Ẇ
†
0W0 = W

†
0Ẇ0. (11)
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The geodesic of density operators is then the curve

ρ(t) = W(t)W †(t), 0 � t < π. (12)

The projected curve will do two turns, since W and −W—always resting on the same
geodesic—will be projected to the same density operator. Hence, the range for t is halved.

Let us consider the geodesic between the states ρA and ρB . Assume WA to be a preimage
of ρA. Using the ‘horizontality condition’ (11) (and positivity of ρA), it can be shown that the
operator WB , that is, the preimage of ρB , should be given by

WB = MWA, (13)

where M is the positive operator given by (5)—the operator corresponding to the best
distinguishing measurement.

Now we start the geodesic at ρA (assumed to be invertible) and let it go through ρB , resting
at the geodesic distance d away. This means that we set{

WA = W(0),

WB = W(d), where cos d = Tr
√

ρ
1/2
A ρBρ

1/2
A .

(14)

Inserting in (10), we can solve for the geodesic W(t) in terms of WA and WB :

W(t) = WA cos t + (WB − WA cos d)
sin t

sin d
. (15)

Alternatively, if we use WB = MWA, we can express W(t) in terms of WA and M:

W(t) =
(

11 cos t + (M − 11 cos d)
sin t

sin d

)
WA. (16)

Here d should be understood as given by cos d = Tr MρA. Finally we have, for the projected
curve [10],

ρ(t) = X(t)ρAX(t), where X(t) =
(

11 cos t + (M − 11 cos d)
sin t

sin d

)
. (17)

In this form we can think of a geodesic as given by a starting point ρA and a positive matrix
M, determining the direction from ρA.

This shows that there is a close relation between the geodesic and the operator M for
the optimal distinguishing measurement. It is then natural to ask: To what extent does the
geodesic determine the best measurement? First we note that the measurement is given by the
eigenbasis of M, while the eigenvalues are superfluous information. To answer the question
we need to know more about the geodesics. In one of Uhlmann’s papers [7], it is explained
how the Bures–Uhlmann geodesic ‘bounces’ at the boundary of the set of density operators.
We will now investigate this feature with the purpose of proving a geometric description of
the optimal measurement.

At the boundary of the set of quantum states the matrices ρ have at least one zero
eigenvalue, hence det ρ = 0. Consider the states on a geodesic, given by equation (17).

det ρ(t) = 0 ⇔ det X(t) = 0 ⇔ det(M − 11x) = 0,

where x = cos d − cot t sin d. (18)

The solutions for x of this equation are the eigenvalues λi of M. For the corresponding values
of t, the states ρ(t) lie on the boundary. These states are

ρ(ti) = (M − 11λi)ρA(M − 11λi)
sin2 ti

sin2 d
. (19)
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(ti is given by the equation λi = cos d − cot ti sin d.) There are N or less boundary states,
since it is the same as the number of different eigenvalues of M. And the number of zero
eigenvalues of ρ(ti) is the same as the degeneracy of the relevant eigenvalue of M. When the
projected curve reaches the boundary of the set of density matrices, it will bounce back into
the interior. After N, or sometimes fewer, bounces, the curve will return to its starting point.
Thus, the geodesic will consist of a number of segments with endpoints at the boundary of the
set of density matrices.

From expression (19), it is easily recognized what states are orthogonal to geodesics
boundary states ρ(ti)—they are nothing but the eigenvectors |mi〉 of M:

〈mi |ρ(ti)|mi〉 = 0. (20)

If all eigenvalues λi are distinct, we get N boundary states, each with one zero eigenvalue,
which singles out the N basis states |mi〉. If there are degeneracies we get less boundary states,
but the sum of the zero eigenvalues is still N. And a state ρ(ti) with n zero eigenvalues is
orthogonal to an n-dimensional subspace of the pure states. In this subspace any basis can be
chosen; M is diagonal in anyone of them. Thus, the geodesic singles out the basis states—the
optimal measurement is fully determined by the geodesic.

For two-level systems this provides a practical method for finding the optimal
measurement. Every pair of states then lies in a disc in the Bloch ball, which is isometric to a
round hemisphere [11]. The geodesics on the hemisphere are just great circles and the relation
to the disc is by orthographic projection. In this case the geodesic’s endpoints at the ‘equator’
are the basis states of the measurement. For higher dimensional Hilbert spaces, the picture is
much more complex.

In conclusion we have seen how the Bures–Uhlmann geodesics in the set of quantum
states bounces at the boundary in a set of N, or less, states. If there are N boundary states,
the states orthogonal to these form an orthonormal basis in the Hilbert space. If there are less
than N boundary states there are just enough lower rank states, so that it is again possible to
form an orthonormal basis of states orthogonal to the boundary states. We have shown that
such a basis is the basis of an optimal distinguishing measurement: the best measurement—in
a specific statistical sense—to perform for distinguishing between two quantum states lying
on a segment of the geodesic. This result is a conceptually interesting characterization of the
optimal distinguishing measurement.
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Note added in proof. An expression for the geodesics, similar to equation (17), has also been
derived by Barnum [12].
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